Adaptively Secure Multi-Party Computation with Dishonest Majority
نویسندگان
چکیده
Adaptively secure multiparty computation is an essential and fundamental notion in cryptography. In this work we focus on the basic question of constructing a multiparty computation protocol secure against a malicious, adaptive adversary in the stand-alone setting without assuming an honest majority, in the plain model. It has been believed that this question can be resolved by composing known protocols from the literature. We show that in fact, this belief is fundamentally mistaken. In particular, we show: Round inefficiency is unavoidable when using black-box simulation: There does not exist any o( n logn ) round protocol that adaptively securely realizes a (natural) n-party functionality with a black-box simulator. Note that most previously known protocols in the adaptive security setting relied on black-box simulators. A constant round protocol using non-black-box simulation: We construct a constant round adaptively secure multiparty computation protocol in a setting without honest majority that makes crucial use of non-black box techniques. Taken together, these results give the first resolution to the question of adaptively secure multiparty computation protocols with a malicious dishonest majority in the plain model, open since the first formal treatment of adaptive security for multiparty computation in 1996. ⋆ Research supported in part from a DARPA/ONR PROCEED award, NSF grants 1136174, 1118096, 1065276, 0916574 and 0830803, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0389. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
منابع مشابه
Adaptively Secure Multi-Party Computation from LWE (via Equivocal FHE)
Adaptively secure Multi-Party Computation (MPC) is an essential and fundamental notion in cryptography. In this work, we construct Universally Composable (UC) MPC protocols that are adaptively secure against all-but-one corruptions based on LWE. Our protocols have a constant number of rounds and communication complexity dependant only on the length of the inputs and outputs (it is independent o...
متن کاملSecure Multi-Party Computation with Identifiable Abort
Protocols for secure multi-party computation (MPC) that resist a dishonest majority are susceptible to “denial of service” attacks, allowing even a single malicious party to force the protocol to abort. In this work, we initiate a systematic study of the more robust notion of security with identifiable abort, which leverages the effect of an abort by forcing, upon abort, at least one malicious ...
متن کاملUniversally Composable Multi-party Computation with an Unreliable Common Reference String
Universally composable (UC) multi-party computation has been studied in two settings. When a majority of parties are honest, UC multi-party computation is possible without any assumptions. Without a majority of honest parties, UC multi-party computation is impossible in the plain model, but feasibility results have been obtained in various augmented models. The most popular such model posits a ...
متن کاملEfficient Constant Round Multi-party Computation Combining BMR and SPDZ
Recently, there has been huge progress in the field of concretely efficient secure computation, even while providing security in the presence of malicious adversaries. This is especially the case in the twoparty setting, where constant-round protocols exist that remain fast even over slow networks. However, in the multi-party setting, all concretely efficient fully-secure protocols, such as SPD...
متن کاملEfficient Two Party and Multi Party Computation Against Covert Adversaries
Recently, Aumann and Lindell introduced a new realistic security model for secure computation, namely, security against covert adversaries. The main motivation was to obtain secure computation protocols which are efficient enough to be usable in practice. Aumann and Lindell presented an efficient two party computation protocol secure against covert adversaries. They were able to utilize cut and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012